
NASA JPL Distributed Systems Technology (DST) Object-Oriented
Component Approach for Software Inter-operability and Reuse

Laverne Hall

Distributed Computing & Systems Engineering Group, JPL/Caltech
Pasadena; CA 91109-8099, USA

And

Chaw-Kwe| Hung (& Imin Lin, JPL Contractor)
DC&SE Group, JPL/Caltech, 4800 Oak Grove Drive,

Pasadena, CA 91109-8099, USA

ABSTRACT

The purpose of this paper is to provide a description of

NASA JPL Distributed Systems Technology (DST)

Section's object-oriented component approach to open
inter-operable systems software development and software

reuse. It will address what is meant by the terminology
object component software, give an overview of the

component-based development approach and how it

relates to infrastructure support of software architectures

and promotes reuse, enumerate on the benefits of this

approach, and give examples of application prototypes
demonstrating its usage and advantages.

Utilization of the object-oriented component technology
approach for system development and software reuse will

apply to several areas within JPL, and possibly across
other NASA Centers.

Keywords: Software reuse, inter-operability, object-
oriented, object component software, component-based

development, infrastructure, distributed systems, and
prototypes.

1. BACKGROUND & INTRODUCTION

The Distributed Computing & Systems Engineering
Group within the Network & Distributed Systems

Technology (DST) Section of IPL provides adv_
research solutions to software architectures via

infrastructure development and prototypes using new

technology for task insertion and provides development
and integration & test support to implementation teams

using these solutions. Many solutions are centered

around the use of an advanced object-oriented distributed

systems approach, currently object-oriented component-

based software in particular, with code, templates,

supporting framework, and sample application prototypes
provided.

The study scope of this paper, which includes rapid
prototyping, focuses on current and future NASA JPL

software development as it relates to:

• How object component technology can be used in IPL

software development and operational environments,

• How it provides a framework for inter-operability and

reuse of components across subsystems for system

upgrade and future migrations (i.e., establish guidelines

for using object/components technology),

• How it reduces development, testing, and maintenance
relative to life-cycle cost and time, and

• How it avoids duplication or re-development efforts

through building reusable components and making

existing software reusable where appropriate.

The framework or infrastructure to support object
component technology focuses on a UNIX environment

and will be addressed relative to various perspectives
through-out several sections of this paper: a)

components development, b) application development, c)
configuration management (CM), and d) operations.

The required support environment and the procedures for

developing new software components and component
deployment will also be addressed for a UNIX

environment via the Object Component Deployment
Management System (CDMS). It will address the issues

of developing components, accessing the components for

development and for operations, the component security,
and the migration path from the transitional to

component-capable configuration management (CM)
system.

2. COMPONENT SOFTWARE APPROACH

Distributed computing allows modern software structure

to occur across distributed networks in an increasingly
flexible and effective manner. Software component



"5)

6)

7)

Runtime Flexibility Components can be

static/dynamic linked and dynamically

loaded/swapped as the program runs (Adaptability),

provides flexibility of building different software
architectures.

Enforce Object-Oriented Design (as standard) -

Component is really a specialized Object structure

(although it can be implemented as non-object).

Development Flexibility allows independent
development environments and different

implementations of services, if needed.

This approach can allow application configurations to be

produced quickly and can result in higher quality, more
reliable software.

3. FRAMEWORK & II_/FRASTRUCTURE

The Distributed Systems Technology (DST) component
framework provides C++ UNIX environment

development support and allows for the incorporation of

different COTS products and middlewares (ex., CORBA
or DCE) into the system architecture. The framework

includes templates for building the three types of

component design patterns which are depicted in Figure

4. The component templates provide developers an easy
way to start building a component for their applications.

The basic component is the simplest form while the

containment pattern allows you to add new functional

interface(s) to the component without directly exposing

the interface(s) to existing functionality. The
aggregation pattern is probably the most efficient and
desired method and which minimizes the need for code

rebuilds. This pattern exposes existing component
interfaces to applications when new functional interfaces

are being added. The usage of these template types is
fully covered in the User's Guide for this effort.

Basic Component

Component Containment

Component Aggregation

?IA

Figure 4. Software Component Design Patterns

All the pseudo names in the femplate files can be

manually replaced. However due to the number of names

to be replaced and the number of files involved, our

experience tells us that the replacement can become time

consuming and error prone. To make the task easier and

to eliminate the human operation errors, tools may be

developed to automate the entire process (can be part of

Developer's Studio in later section on Component
Deployment Management System).

The DST component framework can be viewed as layered
expandable building blocks of features and services which

interact or connect with various other parts of the

framework to provide a suite of component development

and runtime support capabilities for a variety of software

applications and architectures (see Figure 5). Many

support features listed in the diagram (such as component

locating, retrieving, loading, registration, basic security

or authentication, etc.) have been prototyped m:l

demonstrated by DST team-members. Other support

features listed in the figure are under research and design

considerations as a part of ongoing and future
developments.

DST Componen_

Framework / ._,_,,,_ c,_,a_ e,,_,,,_]_ N
(cont.)

/
Figure 5. DST Component Framework

The investigation of commercial-off-the-shelf (COTS)

software continues for products to support the component
framework in a UNIX environment (SoftwareAG,

COM/DCOM, etc.). Other COTS being looked at for

possible utilization include Rational Rose, via the

Unified Modeling Language (UML), to create in-process

component templates and to generate modeling scripts

(example, to be used by our Distributed Modeling
Infrastructure - DMI task which connects separate
simulation tools into a cohesive framework for end-to-

end space mission simulation).



4. APPLICATIONS& PROTOTYPES

Utilizationof the object-oriented component technology
approach for system development and software reuse will

apply to several areas within IPL, and possibly across

other NASA Centers, for example:

• NASA/JPL Telecommunications & Mission

Operations Directorate (TMOD) Deep Space Network
(DSN)

• NASA/JPL Flight Software- Mission Data Systems
OVIDS)

• Other technology and applications programs [ex.,

NASA/JPL Technology & Applications Programs (TAP)

Distributed Modeling Infrastructure (DMI), Department
of Defense (DOD), etc.].

The DST systems engineering _and prototyping team has

developed and demonstrated actual component object code

for several generic services which can be configured for

use by many applications within scientific space and

ground systems. Software components for generic

communications input/out, smart monitor & control,

data manipulation via a symbol table and expression
evaluator, security, constraints, and so on have been

developed by reusing existing code, incorporating both

COTS and in-house implementations for rapid prototype
cost and time savings.

Generic Monitor & Control (M&C) - Example

The example shown in this subsection consists of

reusable components configured for smart monitoring and

control in any application requiring such functionality.

The two components, Publish/Subscribe and Symbol

Table/Expression Evaluator, used in this example and

their interfaces are depicted in Figiare 6 using
conventional object-interface diagrams.

I DSN Component Framework]l

Example of Two Components Built

Identified 4 Interfaces
(well defined)

MON- 1

Publish/ MON- 1

Sub_nbe C°iainer Evaluator Symbol Table

Figure 6. Example of Two Components Built

The functionality or services provided by the two
components can be described as follows:

• GIOMONI (Generic I/O for M&C within the DSN)

Publish and Subscribe: Provides the DSN

Common Software Monitor and Control Data Publishing
and Data Subscribing functions. GIOMONI is

implemented by using the DSN Monitor and Control
Infrastructure Services (MCIS) Common Software.

• EVALUATOR (supports smart M&C)

- Symbol Table and Expression Evaluator: Provides

an object to hold a collection of data of various types.

All data in Symbol Table can be used as operand in

expressions that can be evaluated by Evaluator.

A simple typical smart M&C operational scenario for

using these components across remote, local, or same

machines (say for spacecraft subsystems M&C) is
illustrated in Figure 7 and summarized as follows:

• The Monitor Data Server is a focal-point for the

collection and distribution of various types of
information on subsystems within the DSN.

• One DSN subsystem (left-most) periodically publishes

a list of monitor data items (ex., spacecraft power,
temperature, and memory utilization) to the MDS.

• Another subsystem (bottom-most) publishes a policy,

at given times, of how the data is to be used; i.e., what

decision or action should take place under certain
conditions.

• Any subsystem subscribing to continuously ulxlated

data and/or policies of interest published to MDS use the

data and policy (stored in a symbol table) to perform an

expression evaluation (data plugged into policy) to
determine appropriate commands based on results (ex.,

spacecraft power below certain threshold, switch to
backup supply).

I Generic Monitor and Control
Pub/Sub Component

(Item1* ltom2>item]l ? ,PAIMI.I ,FAIL•

I _

Figure 7. Sample Application - Generic M&C

5. COMPONENT DEPLOYMENT

MANAGEMENT SYSTEM

The required support environment and the procedures for

developing new software components and component



deploymentwill also be addressedfor a UNIX
environment. The Object Component Deployment

Management System (CDMS) for the object components

for software reuse is a system that provides a central

repository for all the components and the interface to

access the repository. It will address the issues of

developing components, accessing the components for

development and for operations, the component security,
and the migration path from the transitional to

component-capable configuration management (CM)

system. The CDMS consists of three major elements: (1)
Component Repository Manager (2) Runtime Loader and

(3) Developer Studio (see Figure 8 for a depiction of the
architecture for the entire system).

Figure 8. Component Deployment Management System

These three subsystems may work stand alone to suit

specific need or be integrated as a suite to provide
complete functionality.

As the core part of the Runtime Loader, ComRegCom is

a special component that handles the registration and

dynamic loading of the available components in a

system, which may consist of multiple hosts in a

network. Runtime Loader (ComRegCom) provides

component interface for applications to dynamically load

other components from the repository during runtime.

The component registry is a file (database for future

work) where users can specify the name, the location, and

other information for a component. The registry API

allows ComRegCom to access the component registry so
it can find the location of a component and load the

component in during runtime.

All the components that are to be used must be specified

in the component registry. Then the applications can

instanciate the components via CoCreatelnstance0

function call provided by ComRegCom. This function

call dynamically loads the desired component during
runtime.

Component Repository Manager maintains a collection

of components that are available to be linked to

applications, and provides methods to access those stored

components.

ComRegShell is a lower layer in Component Repository

Manager. It provides API to access the component
repository that contains the registry and available

components. A upper layer front end, which can be a

friendly graphical user interface or an application, can be

built on top of ComRegShell to allow user to manage
the repository.

The Developer Studio is a development environment that

helps software developers to start building a component
from templates. The Developer's Studio is a future area

of development which can use the three component

template types mentioned in the previous Framework &

Infrastructure section of this paper.

Also a Security Component has been developed and will

be used to verify the authenticity or identity of
components. This will allow applications to load
components at runtime from remote sources and still

retain confidence that the received component is safe, i.e.

from a known user and has not been altered in any way.

The detailed design document for CDMS will include

details on the overall system architecture (software

hierarchy or implementation layout), functional
description on each software element and how each
element interacts with one another. It should also

include the design specification on each software element.

6. STATUS AND FUTURE WORK

Utilization of DST's recommendation of the object-

oriented component technology approach for system

development and software reuse is being incorporated into
system design considerations in several areas within JPL.

In addition to TMOD/DSN applications, TAP's

Distributed Modeling Infrastructure (DMI) task plans to

use this approach and incorporate the Component
Registration Component (ComRegCom) as one of its

core enablers under infrastructure support to

collaboratively bring together different mission

simulation packages. Also for consideration by other

projects, such as Mission Data Systems (MDS), ground

simulations can be built as a scripting of components

and these components can be used in flight if the

platform is compatible or at least it can be mapped into
an on-board component.

So-(' c.,>



Quite a bit of work has been completed via rapid
prototyping and demonstration of generic reusable
services and the supporting reusable infrastructure or

framework to promote an object-oriented component
approach to developing science-based applications in a
UNIX environment. Some planned areas of continuation
for the Component Deployment Management System
(CDMS) task for framework support include the
following:

1. Component Repository Manager- Migrate
component repository into database structure.

2. Component Repository Manager - Enhance user
interface via GUI or Web.

3. Developer Studio - Add preliminary GUI front-end
to drive scripts for component templates.

4. Security Protocol - Wrap higher level security
protocols, such as Secure Socket Layer (SSL), into
components.

[3] Stanley B. Lippman & Josde Lajoie, C++ Primer -
ya Ed., Addison-Wesley, 1998;

[4] Terry Quatrani, Visual Modeling with Rational Rose

& UML, Addison-Wesley,1998.

7. ACKNOWLEDGMENTS

We acknowledge the significant technical contributions

made to these efforts by Imin Lin, past JPL lead
software systems engineer and current part-time support
contractor to JPL. Also, thanks are extended to

prototyping contributions made by the technical

development team-members: Judy Yin, Amalaye Oyake,
and Chialan Hwang.

8. CONCLUSIONS

The objective of DST's reuse and object-oriented
component approach is to provide advanced technical
solutions via software prototypes and supporting
framework, allowing tasks to concentrate on their
application-specific domain solution(s). Most scientific

software system applications can be built with object-
oriented components, supporting framework, and design
patterns. The use of the component object approach
allows for emerging technologies through careful design
of interfaces. Major task functional blocks of systems
can be implemented as plug-in modules (Components).

9. REFERENCES

The following are references use to support this work:

[1] Dale Rogerson, Inside COM (Microsoft's Component
Object Model), Washington: Microsoft Press, 1997.

[2] Dr. Richard Grimes, Professional DCOM
Programming, Canada: Wrox Press Ltd., 1997.


